If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+4y-40=0
a = 4; b = 4; c = -40;
Δ = b2-4ac
Δ = 42-4·4·(-40)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{41}}{2*4}=\frac{-4-4\sqrt{41}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{41}}{2*4}=\frac{-4+4\sqrt{41}}{8} $
| x•11=715 | | 3-⅕x=-7 | | 4n^2+6n=105 | | 0.5n-0.2n=6 | | 402-8(6x+41)-5(16-3x)-41=604-(13x+51) | | -20=-5/4x | | d/(1.2*8=1 | | c/4-9=3 | | 2=x+1-5/8 | | 3x-+5=21 | | x+17=3x-19 | | 5(x-3)+2x=(x-4)+4x | | 32*x=192 | | 2c-6=24 | | 9t-3t+2t=2.4,t | | 2/4+x=6/8 | | 1/3p+6=10 | | 3y+53=0 | | 13n+46=1+8n | | -13=5(1+4×)-2x | | c/10+6=8 | | 1/2x2=4x-23 | | (8.4/y)+5=6.2 | | -2t=-60 | | 0.5x=8=12 | | 3b+2b=4,500;b | | 16x^2+3x-2=0 | | 10c+23=83 | | Y+3(2y-4)=y | | -3x-5(-4x-3)=100 | | 7.5/5=2/x | | 19x=229 |